
“Lean and Efficient Software:
Whole-Program Optimization of Executables”

Project Summary Report #2

(Report Period: 9/30/2014 to 12/31/2014)

Date of Publication: February 19, 2015
© GrammaTech, Inc. 2015

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-14-C-0037
Effective Date of Contract: 06/30/2014

 Technical Monitor: Sukarno Mertoguno (Code: 311)
 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Thomas Johnson

531 Esty Street
Ithaca, NY 14850-4201
(607) 273-7340 x. 134

tjohnson@grammatech.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:
Krisztina Nagy
T: (607) 273-7340 x.117
F: (607) 273-8752
knagy@grammatech.com

Administrative Contact:
Derek Burrows
T: (607) 273-7340 x.113
F: (607) 273-8752
dburrows@grammatech.com

mailto:tjohnson@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 FEB 2015 2. REPORT TYPE

3. DATES COVERED
 30-09-2014 to 31-12-2015

4. TITLE AND SUBTITLE
Lean and Efficient Software: Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GrammaTech,531 Esty Street,Ithaca,NY,14850-4201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

1 Financial Summary
Contract Effective Date 06/30/2014
Contract End Date 06/30/2016
Reporting Period 09/30/2014 – 12/31/2014
Total Contract Amount $602,165
Incurred Costs this Period $140.239
Incurred Costs to Date $225,941
Est. Cost to Completion $376,224

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
Our objective in this project is to substantially improve the performance, size, and robustness
of binary executables by using static and dynamic binary program analysis techniques to
perform whole-program optimization directly on compiled programs: specializing library
subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. In particular, we will apply specialization and
partial evaluation technology, integrating the new technology with the techniques developed
during the previous contract effort. We expect the optimizations to be applied at or

2

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

immediately prior to deployment of software, giving our tool an opportunity to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting
techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. Thus, we believe there is now a great opportunity to design tools that
will revolutionize the software development industry.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items for the base contract period are listed below:

1. Investigate specialization opportunities. The contractor will design and implement limit
studies that will help focus the search for fruitful applications of partial evaluation and set
goals for attainable improvements.

2. Transfer UW technology. The contractor will transfer program-specialization or partial-
evaluation technology from the University of Wisconsin and integrate it into the
contractor’s tool chain.

3. Improve and extend UW technology. The contractor will improve the robustness and
scalability of the transferred technology, and complete partially implemented
components and functionality.

4. Improve and extend IR construction and rewriting. The contractor will improve
intermediate-representation construction and rewriting infrastructure as needed to
demonstrate functionality on the primary test subjects.

5. Develop and maintain test infrastructure. The contractor will create an extensive suite
of test applications, and will maintain and extend it as necessary. The contractor will also
implement validation and measurement functionality that will enable tracking the
robustness and benefits of program transformations.

6. Investigate security implications. As time permits, the contractor will study the effect of
different instruction-generation mechanisms, such as peephole superoptimization, on
security. As time permits, the contractor will also study whether polyvariant
specialization enables (i) the creation of finer security-relevant models of program
behavior and (ii) more accurate or efficient enforcement of security policies. If earlier
tasks that are essential in completing a functional prototype require more effort, we
propose to shift this task to the option period, with the possible adjustments of lower
effort on either or both of the first two option-period tasks.

3

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

7. Produce deliverables and attend required meetings. The contractor will produce

technical documentation in the form of reports and a working software prototype. The
contractor will attend meetings requested by the program monitor.

3 Accomplishments during the reporting period
This report covers the second quarter of the base contract period. During this quarter, we
focused our efforts on completing the switch to the sieve-style rewriting that GrammaTech’s
ADAPT project has developed. We’re happy to report that by the end of the quarter, LACI is
now able to successfully rewrite statically linked executables with the new method.

In addition, we invested some effort in refining how jump tables are handled in CodeSurfer’s
IR recovery phase. Accurately modeling jump tables in the IR will enable LACI’s transforms to
make more aggressive modifications and will also make LACI’s rewriting process more robust.

We continue to track the progress that University of Wisconsin (UW) is making on partial
evaluation and instruction synthesis. Our expectation is that it will be mature enough in the
next quarter to begin transitioning to GrammaTech in order to leverage in LACI.

In the next quarter, we plan to work on two fronts: 1) expanding LACI’s new rewriting
framework to support dynamically linked libraries, and 2) transitioning UW’s partial
evaluation and instruction synthesis technology.

The following sections provide details on these accomplishments.

3.1 Making Rewriting More Robust
As described in the report for the previous quarter, we have been converting LACI’s
infrastructure to leverage a new style of rewriting inspired by the REINS rewriting system.
This new style was first developed under a related project at GrammaTech that is developing
ADAPT, a tool for patching vulnerabilities in software. The new style uses a concept called a
“sieve” to handle indirect control flow. Thus, we’ve taken to referring to this approach as
sieve-style rewriting.

In the previous quarter, we had made progress on implementing an enhancement to
CodeSurfer/SWYX to support conservative disassembly, a requirement for sieve-style
rewriting. During this reporting period, we continued to fine-tune this component.

We also invested substantial effort in reworking the reassembly and linking toolchain on the
backend of the rewriting process to support sieve-style rewriting. The challenge here is to
retain the original program’s byte signature in its original location while adding the rewritten
code. The rewritten code must perform data references to the original program image, but
control-flow transfers must be redirected to remain within the rewritten code portion of the
new program image.

4

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

While we still have some bugs to iron out, the new rewriting system appears to function
correctly on small, statically linked examples. A task moving forward will be to expand our
testing to larger example.

In addition, we have a remaining challenge to support dynamically linked libraries. The
challenge here is that the sieve-style rewriting does not statically alter the values of code
pointers that the rewritten program manipulates. Code pointers retain the values they had in
the original, unmodified program. To perform indirect jumps, the sieve-style rewriting
performs a dynamic translation step to convert the values of code pointers to the
appropriate new values in the rewritten program. Interfacing with dynamically linked
libraries that do not support this translation step may lead to execution errors any time a
code pointer crosses the boundary between the rewritten executable and the library.

There are a couple of approaches we’ve begun exploring to deal with this. One option is to
intercept any code pointers and translate them before being passed to the library. This may
be difficult to accomplish in programs that pass code pointers to libraries in complex data
structures. Another approach is to rewrite the dynamic libraries a program uses in addition
to the program itself. This would have the benefit of providing confidence in the rewriting
system. However, it would incur maintenance overhead for users who want to update their
system libraries, say. Finally, one of LACI’s transformations is to translate dynamic libraries to
static libraries. This enables further optimization and customization to occur, but it will also
address the rewriting challenge, as the executable no longer leverages dynamic libraries.

In the end, it’s likely a combination of all three approaches may work best. Our plan is to
focus on the third option (leveraging LACI’s dynamic-to-static library conversion) as a first
step, since that is simplest to get working under the current contract. We plan to focus on
this in the early part of the next quarter.

3.2 Evaluation of UW Technology
As mentioned in the previous report, we have been tracking UW’s progress on developing
partial evaluation and instruction synthesis. We have not yet transitioned the technology to
GrammaTech. We currently expect this to occur in the next reporting period.

We have not made further progress on working with UW’s specialization slicing. A key facet
of the slicing is that it is overly sensitive to use of the stack pointer. Because many
instructions access the stack to read or write local variables, slices end up being unreasonably
large (and thus not much dead code can be identified). Our understanding of UW’s work on
partial evaluation and instruction synthesis is that these new capabilities may help alleviate
this issue for special slicing. Thus, we’ve put further investigation on hold until the newer
work is available.

4 Goals for the next reporting period

In the next reporting period we expect to complete the following:

5

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

• Begin integrating LACI’s library conversion transformation from Phase I to support the
sieve-style rewriting, enabling the rewriting to support dynamic libraries.

• Begin transitioning UW’s work on partial evaluation and instruction synthesis.

6

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #2 © GrammaTech, Inc. 2015

5 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

6 Issues requiring Government attention
None.

Milestone
Planned
Start date

Planned Delivery/
Completion Date

Actual Delivery/ Completion
Date

Kickoff Mtg 9/4/2014 9/4/2014

Transition Specialization Slicing 7/2014 12/2014

Robustness & Reliability of IR &
Rewriting

7/2014 12/2014 12/2014 – statically linked
exes

First Quarterly Report 9/30/2014 11/21/14

Transition Partial Evaluation
and Instruction Synthesis

12/2014 5/2015

Second Quarterly Report 12/30/2014 2/19/15

Third Quarterly Report 3/30/2014

Evaluation 4/2015 6/2015

Final Report 6/30/2014

7

Data Subject to Restrictions on Cover Page.

	Project Summary Report #2
	(Report Period: 9/30/2014 to 12/31/2014)
	1 Financial Summary
	2 Project Overview
	3 Accomplishments during the reporting period
	3.1 Making Rewriting More Robust
	3.2 Evaluation of UW Technology

	4 Goals for the next reporting period
	5 Milestones
	6 Issues requiring Government attention

